

Learning Modules

- All Activities are Phenomenon-based, support NGSS by offering local, environmentally-based, real-life science and engineering opportunities.
- ❖ Nearly all activities support the Environmental Principles and Concepts and partially provide the annual 40 hours of outdoor environmental education recommended by the California's Blue Print for Environmental Literacy, under Sections 71302 and 51227.3 of the Ed Code

Birds, Beaks & Feet

The unique adaptations that provide birds the ability to fly and to occupy many diverse niches are illustrated through the hands-on manipulation of replica beaks, feet, and feathers. Structure-function relationships are highlighted, as are local food webs and feeding styles. Local bird species are highlighted, and bird watching is introduced.

Disciplinary Core Ideas		<u>ıs</u>	Cross Cutting Concept	Science and Engineering Practices	Environmental Principles and
K-2	3-5	6-8	Patterns	 Asking Questions and 	<u>Concepts</u>
LS1.A,C	LS1.A,C	LS1.A	Stability and Change	Defining Problems	Principle 1 - A, B
LS4.C,D	LS2.A	LS2.A	Structure and Function	 Constructing Explanations 	Principle 2 - C, D
	LS4.C,D	LS4.C		and Designing Solutions	Principle 4 - B, C
				5 5	Principle 5 - B

^{** (}The Standards listed are not taught to mastery, but instead touch upon and discuss the ideas, concepts, practices and principles listed)

Birds of Prey

A local Master Falconer presents live birds of prey while pointing out the adaptations for flight, predation, camouflage, behavior, and survival. Food webs that include these local predators are highlighted. This presentation allows the student to view these raptors in an up-close and non-threatening fashion not normally available in the wild.

Disciplinary Core Ideas				Cross Cutting Concept	Science and Engineering Practices	Environmental
K-2 LS1.A, C, D LS2.A LS4.D ESS3.C	3-5 LS1.A, C, D LS2.A LS4.C LS4.D ESS3.C	6-8 LS1.A, C, D LS2.A LS4.C	9-12 LS1.A LS2.A	Scale, Proportion and Quantity Energy and Matter, Flows, Cycles and Conservation Structure and Function Patterns	 Asking Questions and Defining Problems Planning and Carrying Out Investigations 	Principles and Concepts Principle 1 - A, B Principle 2 - C, D Principle 4 - B Principle 5 - A, B

Confidence, Initiative, and Teamwork (Experience Leadership Opportunities and Character Development)

The instructor is a national faculty member of the "Pursue Victory with Honor" program associated with the acclaimed Character Counts. **C.I.T.** traits are accomplished through teacher-led discussions and hands-on activities that provide teachable moments to reemphasize the qualities of self-confidence, utilizing initiative, teaching the importance of teamwork, and building an understanding of leadership. The activities will vary depending on the grade level of the students.

California State Standards	
Physical Education (2-8)	5th Grade: 5.3-5.7
2nd Grade: 5.1 -5.7	6th Grade: 5.1, 5.2, 5.4
3rd Grade: 5.3-5.6	7th Grade: 5.1-5.5
4th Grade: 5.3-5.6	8th Grade: 5.1, 5.2, 5.4, 5.5, 5.6, 5.7

Decomposition Mission

Students study the process of decomposition, through exploration and discussion. They will discover the key characteristics of decomposition, by creating a rea decomposition sequence model. Students will learn the difference between chemical and physical decomposition, as well as, search for evidence of decomposers. Students will classify the different types of decomposers observed in their models. Finally, students will realize the role that decomposers play in the cycling of matter within ecosystems. (Adapted from Lawrence Hall of Science)

Disciplinary Core Idea	Cross Cutting Concept	Science and Engineering Practices	Environmental Principles and
K-2 3-5 LS1.C LS1.A LS2.A LS3.B LS4.B, D	Cause and Effect Stability and Change System and System Models	 Asking Questions and Defining Problems Developing and Using Models 	Concepts Principle 1 - B, C Principle 3 - A, B, C

Draw the River

Using colored pencils students create an environmental art piece. Students are exposed to basic art vocabulary and techniques, learning a new way to "see" the natural environment. The components of a natural habitat (food, water, shelter) are also discussed.

Disciplina	Disciplinary Core Cross (Science and Engineering	<u>Environmental</u>	California Art Standards:
<u>Ideas</u>		<u>Concept</u>	<u>Practices</u>	Principles and	2nd Grade: 1.3, 2.3
K-2	3-5	Structure and	Asking Questions and	<u>Concepts</u>	3rd Grade: 1.3, 1.5, 2.3
LS1.A	LS1.A	Function	Defining Problems	Principle 1	4th Grade: 1.5
LS3.B	LS3.B		Constructing Explanations		5th Grade: 2.1
LS4.D	LS4.B, D		and Designing Solutions		6th Grade: 2.1, 2.3, 2.4
					7th Grade: 2.1
					9th- 12th Grades: 2.1, 2.4, advanced:
					2.1

Fur, Feet and Tracks

Usually offered as an extension to Paws and Jaws, students will learn more about mammalian structure-function relationships. In this activity, students investigate fur samples and tracks, through hands-on exploration of pelt samples and track plates. Students will also use field guides to answer questions, writing and drawing "field notes" about these local animals.

Disciplinary Core Ideas		Cross Cutting Concept	Science and Engineering Practices	<u>Environmental</u>
K-2	3-5	Cause and Effect	Asking Questions and Defining	Principles and Concepts
LS1.A	LS1.A	Patterns	Problems	Principle 1 - A, B
LS4.D	LS4.C	Systems and System Models		Principle 2 - C
	LS4.D			

Gold Rush

Discover California's rich past by learning about the California Gold Rush. Learn the importance of the gold rush in bringing thousands of immigrants to California and it becoming the 31st state in the union. Learn how and when gold was discovered, and how people mined gold. Learn about supply and demand of goods and services during the wild days of the gold rush.

Disciplina	Disciplinary Core Ideas		Cross Cutting Concept	Environmental Principles and	California State Standards:	
K-2	3-5	6-8	9-12	Cause and Effect	<u>Concepts</u>	History-Social Science
ESS3.C	ESS3.A ESS3.C	ESS3.A ESS3.C	ESS3.A ESS3.C	Patterns	Principle 2 - B, C, D Principle 4 - A, C	4th Grade: 4.1.5, 4.3.2, 4.3.3, 4.4.2

How do You Spell Atlatl

The ATALATL is a prehistoric weapon or "spear thrower" used by Indigenous cultures world-wide. Its development used leverage to increase weapon velocity and raise hunting proficiency. Atlatl use dates back at least 21,000 years. In this hands-on lesson, where students learn how the atlatl is designed, its purpose, and the physics (forces, motion, and energy) behind its function. Students will have an opportunity to practice spear-throwing with an atlatl, to determine the mechanical advantage it provided indigenous hunters. (For grades 3-8)

Disciplinary Core Ideas		Cross Cutting Concept	Science and Engineering Practices	Environmental	<u>California State</u>
3-5	6-8	Cause and Effect	 Asking Questions and 	Principles and	Standards:
ESSA.3	PS2.A	Structure and Function	Defining Problems	Concepts	History-Social Science
PS2.A	PS3.A	Energy and Matter	 Developing and Using 		3.2.2,
PS2.B	PS3.B		Models	Principle 1-A	4.1.1
PS3.B	PS3.C		 Planning and Carrying Out 		5.1.1
PS3.C			Investigations		6.1.1

I spy... (Primary Grade level Scavenger Hunt)

Using the five senses, young students locate and collect small items that represent the plants and animals of this river community. Students work in small groups to complete this task. Throughout the activity, students will learn what the different types of plant and animal habitats are in and around a local river.

Disciplin	isciplinary Core Ideas Cross Cutting Concept Science and Engineering Practice		Science and Engineering Practices	Environmental
K-2	3-5	Patterns	 Asking Questions and Defining 	Principles and Concepts
LS1.D	LS1.D	Structure and Function	Problems	Principle 1- A
LS4.D	LS4.C, D	System and System Models	 Constructing Explanations and Designing Solutions Planning and Carrying Out Investigations 	Principle 2 - C

Incredible Journey

Students simulate the movement of water within the water cycle by rolling giant dice to demonstrate the variable paths, direction, and states of matter. A detailed discussion of the water cycle precedes the activity and includes the topic of local water resources, water treatment, and water conservation. Closure involves a writing component that outlines their specific water journey and the processes involved. (Adapted from Project Wet)

Disciplinary Core Ideas		eas	Cross Cutting Concept	Science and Engineering Practices	Environmental
K-2	3-5	6-8	Stability and Change	 Developing and Using Models 	Principles and Concepts
ESS2.C	ESS2.C	ESS2.C	System and System Models		Principle 1 - A, B
ESS3.C	ESS3.C	ESS3.C			Principle 3 - A, B, C
ESS3.A	ESS3.A	ESS3.A			
PS1.A	LS2.B	PS1.A			
	PS1.A				

Indomitable Salmon

Students will study the physical life cycle of the Pacific Salmon. Students simulate the hazardous migration of the Pacific Salmon. This recreation takes the smolts from fresh water to the ocean and back to freshwater creeks to spawn. Fish hatcheries, native fish, and the current status of the salmon restoration along the San Joaquin River are discussed. (Adapted from Project Wild)

Disciplinary Core Ideas		<u>eas</u>	<u>Cross Cutting Concept</u> <u>Science and Engineering Practices</u>		Environmental
K-2	3-5	6-8	Cause and Effect	 Constructing Explanations and 	Principles and Concepts
LS1.B	LS1.B	LS1.B	Patterns	Designing Solutions	Principle 2 - C
LS3.A	LS2.C	LS2.C	Stability and Change	 Using Mathematics and 	Principle 3 - A, B, C
ESS3.C	LS2.D	ESS3.C	System and System Models	Computational Thinking	Principle 4 - C
	ESS3.C			compatational minking	Principle 5 - A, B

Kayaking

Participants are instructed in basic kayaking skills, water safety, teamwork, and communication skills. After a kayak and safety orientation participants will practice paddling skills and techniques on the river. We believe that participation in the kayak program fosters water safety knowledge, land stewardship practices, and an appreciation of nature.

Disciplinary Core Ideas		Cross Cutting Concept	California State Standards		
4-5	6-8	9-12	Cause and Effect	Physical Education	9 th -12 Grades:
ESS2.C	ESS2.C	ESS2.C	Patterns	4 th Grade 3.1, 3.2, 3.6, 3.7, 5.6	Course 1: 1.1.,1.7, 1.10, 3.1, 3.9
ESS3.A	ESS3.A	ESS3.A		5 th Grade: 3.1, 3.7, 5.5	Course 2: 3.1, 3.8
ESS3.C	ESS3.C	ESS3.C		6 th Grade 5.1, 5.3, 5.4	Course 3A: 1.1, 1.2, 1.4, 1.5, 2.1, 3.4, 3.7
LS4.D	LS4.D	LS4.D		7 th Grade 1.3, 1.4, 1.6, 5.1, 5.4, 5.5	Course 3B: 3.10, 3.11
				8 th Grade 3.6, 5.2, 5.5, 5.6	Course 3C: 3.6, 3.9
					Course 3E 1.1-1.7, 3.7, 3.8, 3.10
					Course 4A: 1.4, 3.3

Macroinvertebrates

Using macroinvertebrates (water creepy crawlies) as biological indicators of river water quality, students determine the health of the San Joaquin River. Color picture keys assist students with the identification and classification of the freshly collected animals. A written analysis involves the collection of class data and the sorting of samples to determine levels of pollution tolerance.

Disciplinary Core Ideas				Cross Cutting Concept	Science and Engineering Practices	Environmental
K-2	3-5	6-8	9-12	Patterns	Asking Questions and Defining	Principles and Concepts
ESS2.C	ESS2.C	ESS3.C	LS2.C	Stability and Change	Problems	Principle 2 - A, B, C
ESS3.C	ESS3.C	LS1.A, C, D	ESS3.C	Structure and Function	Engaging in Argument from	Principle 3 – C
LS1.A, C, D	LS1.A, C, D	LS2.A, C		Systems and System	Evidence	Principle 4 - B
LS2.A	LS2.A, C	LS4.C, D		Models	Obtaining, Evaluating, and	
LS4.D	LS4.C, D				Communicating Information	
					Planning and Carrying Out	
					Investigations	
					Using Mathematics and	
					Computational Thinking	

Making Cordage

In their study of experimental archaeology, students will make cordage and use an activity sheet to experience a technique and skill prehistoric peoples needed for everyday life. Students will be able to compute the amount of time and materials that may have been required to make cordage in prehistoric times and share their impressions of what daily life of these people might have been like. (compare and contrast then v. now). Students will take home the cordage they have made. If time and supplies permit, students may make pine nut beads to adorn their cordage. During this activity students read "How the Mono Tied Their World Together", briefly discussing the importance of natural resources to the Mono and their prehistoric ancestors.

Disciplinary Core Ideas (Cross Cutting	Science and	Environmental Principles and	California State Standards:
K-2	3-5	Concept	Engineering Practices	Concepts	History-Social Science
ESS3.A	ESS3.A	Scale	 Asking 	Principle 1 - A, B	2.4.1, 3.1.2, 3.2.2, 4.2.1
		Proportion and	Questions	Principle 2 – B, C	Math
		Quantity	 Constructing 	Principle 3 – A, B	K-5 - Reason Abstractly and
			Explanations	Principle 4 – A, B	Quantitatively
			·		Grade 4 - 4.MD, Grade 5 -5.MD

Marvelous Minerals

Students explore the wonderful world of minerals through a series of hands-on stations. Using a variety of mineral samples, students work in teams and rotate through stations to investigate physical properties of minerals such as color, crystal shape, hardness (Mohs scale), magnetism, density, heft, luster, streak, taste and odor.

Disciplinary Core Ideas			Cross Cutting Concept	Science and Engineering	Environmental Principles
3-5	6-8	9-12	Patterns	<u>Practices</u>	and Concepts
ESS2.C	ESS2.C	ESS2.C	Structure and Function	 Asking Questions 	Principle 1 - A, B
ESS3.A, C	ESS3.A, C	ESS3.A, C	Energy and Matter	 Constructing Explanations 	Principle 2 - B, C
LS4.D	LS4.D	LS4.D	Stability and Change		Principle 4 - A
			Systems and System Models		Principle 5 - A

Migration Headache

Students become "migrating birds" traveling between nesting and wintering habitats. Along their journeys they experience some of the threats that may affect the species survival. Migratory flyways and local bird migrations are highlighted with emphasis on the birds in our Pacific Flyway and our local wetland areas. Students then graph the results to see the fluctuations in population and the correlation to wildlife threats. (Adapted from Project Wild)

Disciplinary Core Ideas			Cross Cutting Concept	Science and Engineering Practices	<u>Environmental</u>
K-2	3-5	6-8	Cause and Effect	Developing and Using Models	Principles and Concepts
ESS3.C	ESS3.C	ESS3.C	Stability and Change	Using Mathematics and	Principle 2 - A, B, C
LS4.D	LS2.C	LS2.C		Computational Thinking	
	LS4.C, D	LS4.B, C, D		,	

Minerals, Rocks & Fossils

The students have just returned from a geological expedition. Their job now is to identify and describe the samples they have collected. Working with other students in small groups they will move through several stations where they will carry out investigations to describe and identify various minerals, rocks and fossils. They will co-operatively arrive at their results and then record them in their Geologic Lab Journal.

Disciplinary Core Ideas			Cross Cutting Concept	Science and Engineering Practices	Environmental
3-5	6-8	9-12	Energy and Matter	 Asking Questions and Defining 	Principles and Concepts
ESS2.C	ESS2.C	ESS2.C	Patterns	Problems	Principle 1 - A
ESS3.A, C	ESS3.A, C	ESS3.A, C	Stability and Change	 Analyzing and Interpreting 	Principle 4 - A
LS4.D	LS4.D	LS4.D	Systems and System Models	Data	Principle 5 - A
				24.4	

Nature Walkabout

Lead by qualified instructors, students take a stroll along the San Joaquin River discovering local riparian flora and fauna. The identification of the wildlife and native plants involves the use of the students' five senses. Adaptations specific to survival, including the Native American uses of these plants and animals and the problems caused by invasive plants are the focus of this guided walk. Scientific and common names are used, depending on the grade level.

Disciplinary	Disciplinary Core Ideas			Cross Cutting Concept	Science and Engineering Practices	<u>Environmental</u>
K-2	3-5	6-8	9-12	Patterns	Asking Questions and Defining	Principles and Concepts
ESS2.C, E	ESS2.A, B	ESS2.C, E	ESS2.C	Stability and Change	Problems	Principle 1 - A, B, C
ESS3.A, C	ESS3.A, C	ESS3.A, C	ESS3.A, C	Structure and Function	Constructing Explanations and	Principle 2 - C, D
LS1.A, C	LS1.A	LS1.A, C	LS2.C	Systems and System	Designing Solutions	Principle 5 - A, B
	LS2.C	LS2.C		Models		

Paws and Jaws

The adaptations that allow mammals to be successful on land and water are explained through the hands-on exploration of replica skulls, teeth, and feet. Structure-function relationships are modeled so that predator-prey relationships, food web placement, and feeding types (carnivore, herbivore and omnivore) can be easily identified. Local animal specimens are the focus of this activity.

Discipli	Disciplinary Core Ideas		Cross Cutting Concept	Science and Engineering Practices	Environmental
K-2	3-5	6-8	Cause and Effect	Asking Questions and Defining	Principles and Concepts
LS1.A	LS1.A	LS1.D	Patterns	Engaging in Argument from	Principle 2 - C
LS1.D	LS1.D		Structure and Function	Evidence	
LS4.D	LS4.C			Obtaining, Evaluating, and	
				Communicating Information	
				Planning and Carrying Out	
				Investigations	

Pony Express

The Pony Express was an exciting part of American western history. The Express lasted only eighteen months from April of 1860 until October of 1861. The distance traveled by the Pony Express was more than two thousand miles from St. Joseph, Missouri to Sacramento, California. Students will be given information and participate in activities about the Pony Express route and its importance of mail delivery to and from the west before the establishment of the railroads.

California State Standards: History-Social Science 3.1.2, 3.2.2, 4.2.1

Predator vs. Prey

Using cards listing predator or prey adaptations, students will be able to compare the predators' adaptations against preys'. The games will assist students in simulating real life predator-prey interactions, while understanding the concept of change over time in a population.

Disciplinary	Disciplinary Core Ideas		Cross Cutting Concept	Science and Engineering Practices	Environmental
3-5	6-8	9-12	Stability and Change	 Asking Questions and Defining 	Principles and Concepts
ESS2.C	ESS2.C	LS2.D	Systems and System Models	Developing and Using Models	Principle 3 - A, C
ESS3.A, C	ESS3.A, C	LS4.C, D		, -	Principle 4 - A, B, C
LS2.C	LS2.C				
LS2.D					

Quick Frozen Critters

Students will play an active game of freeze tag while learning about predator and prey relationships. They will explain the importance of the relationship between predators and prey and the environment they live in and describe how the interdependence limits wildlife populations. (Adapted from Project Wild)

Disciplinary Core Ideas			Cross Cutting Concept	Science and Engineering Practices	<u>Environmental</u>
3-5	6-8	9-12	Cause and Effect	Asking Questions and Defining	Principles and Concepts
ESS2.C	ESS2.C	LS2.D	Patterns	Developing and Using Models	Principle 3 - A, C
ESS3.A, C	ESS3.A, C	LS4.C, D	Stability and Change		Principle 4 - A, B, C
LS2.C	LS2.C		System and System Models		
LS2.D					

Reading by the River

An instructor guides the students through a selection of environmental-based literature to generate a discussion of stewardship and personal responsibility from the readings. The selections always focus on some aspect of rivers and/or riverside plants and animals. This activity is designed to increase reading skills and build an awareness of the common waterways and lands we all share.

Disciplinar	Disciplinary Core Ideas		Cross Cutting Concept	Science and Engineering Practices	Environmental
K-2	3-5	6-8	Patterns	 Asking Questions and Defining 	Principles and Concepts
ESS2.A	ESS2.A	ESS1.C	Structure and Function	 Constructing Explanations and 	Principle 1 - A, B
ESS3.A	ESS3.A	ESS2.A		Designing Solutions	
		ESS3.A			

Rock-On!

The rock cycle forms the foundation of this lesson. Students examine many different types of rocks and Coast Range fossils while learning about global and local plate tectonics and the processes of erosion. Emphasis is placed on California's diverse geology, mountain building, volcanic activity, and glaciations. Exploration of the San Joaquin riverbed to determine rock origin and types completes this module.

Disciplinary Core Ideas			Cross Cutting Concept	Science and Engineering Practices	<u>Environmental</u>
3-5	6-8	9-12	Cause and Effect	 Asking Questions and Defining 	Principles and Concepts
ESS2.C	ESS2.C	ESS2.C	Patterns		Principle 1 - A
ESS3.A, C	ESS3.A, C	ESS3.A, C	Stability and Change		Principle 4 - A
LS4.D	LS4.D	LS4.D			Principle 5 - A

Salmon Art - Salmon Natural History and Art

The life cycle, historic importance, and the current relevance of the Pacific Salmon to the San Joaquin River are explained. Students enrich their knowledge base by using anatomically correct latex models of salmon and trout (Salmonids) to create colorful artistic fish prints reminiscent of Japanese Gyotaku images.

Disciplinary Core Ideas			Cross Cutting Concept	Science and Engineering Practices	Environmental
K-2 ESS3.C LS1.A, B	3-5 ESS3.C LS1.A, B	6-8 ESS3.C, D LS1.D	Structure Function	Developing and Using Models	Principles and Concepts Principle 1 - A, B, C Principle 2 - A, B, C
<u>California</u> S	State Standa	ırds: History-Social Sc	tience 3.1.2, 3.2.2, 4.2.1		

Scavenger Hunt

Students work in pairs or small groups to locate and identify various flora and fauna that inhabit Scout Island. Incorporating a multi-sensory approach to interpret the clues and evidence left in the environment, students gain a broader concept of riparian habitats from the living and non-living component parts.

Disciplinary Core Ideas				Cross Cutting Concept	Science and Engineering Practices Environmental
K-2 LS4.D	3-5 ESS2.C ESS3.A, C LS4.D	6-8 ESS2.C ESS3.A, C LS4.D	9-12 LS4.D	Patterns Structure and Function Systems and System Models	 Asking Questions and Defining Problems Constructing Explanations and Designing Solutions Planning and Carrying Out Investigations Principles and Concepts Principle 1 - A

Suitcase for Survival: Illegal Wildlife Trade and Endangered Species

Using confiscated wildlife artifacts, products and parts provided by the U.S. Fish and Wildlife Agency, this national program raises awareness about wildlife trade and the loss of biodiversity. This presentation addresses the general reasons many species are endangered and/or threatened and focuses specifically on the billions of dollars of uncontrolled illegal trade in wild plants and animals. Students will gain an understanding of why biodiversity is important and how their actions can contribute to biodiversity conservation. Children will get a chance to handle elephant tusks, sea turtle items, python skins, leopard pelts, and more.

Disciplinary Core Ideas			Cross Cutting Concept	Science and Engineering Practices	<u>Environmental</u>
4-5	6-8	9-12	Cause and Effect	 Asking Questions and Defining 	Principles and Concepts
ESS3.C	ESS3.C	ESS3.C	Patterns		Principle 1 - C
LS2.C	LS2.C	LS2.C	Systems and System Models		Principle 2 - A, B, C
					Principle 3 - C
					Principle 4 - A, B, C
					Principle 5 - A, B

Walking Where They Lived

This nature walk guides students along the river corridor and to the Native American site at Scout Island. Native plants, their historic usages and cultural implications are emphasized. The activity focuses on the relationship and dependence of the indigenous peoples to their natural surroundings. Stories from local tribes, their basketry and use of grinding stones are shared.

Disciplinary Core Ideas				Cross Cutting Concept	Science and Engineering Practices	Environmental Principles	
K-2 ESS3.C	3-5 ESS3.C	6-8 ESS3.C	9-12 ESS3.C	Energy and Matter Patterns Stability and Change	 Asking Questions and Defining Problems Constructing Explanations and Designing Solutions 	and Concepts Principle 1 - A, B Principle 3 - C Principle 5 - A, B	
California State Standards: History-Social Science 3.1.2, 3.2.2, 4.2.1							

Water Quality

Students perform several water quality (physical-chemical) index tests to measure the water quality of the San Joaquin River at Scout Island. These tests include pH, total dissolved solids, turbidity, temperature, and dissolved oxygen. The results are used as a means of estimating the overall health of the Scout Island stretch of the river. The results are then assessed in relation to the salmon restoration project and the water quality parameters required by the salmon to survive.

Disciplinary	Core Ideas			Cross Cutting Concept	Science and Engineering Practices	Environmental
K-2 ESS3.A, B	3-5 ESS3.A, B LS2.C	6-8 ESS3.A, B LS2.C	9-12 ESS3.A, B LS2.C	Patterns Stability and Change Systems and System	 Analyzing and Interpreting Data Asking Questions and Defining Problems 	Principles and Concepts Principle 1 - A, B, C
	LS4.C, D PS1.A	LS4.C, D PS1.A	LS4.C, D	Models	 Constructing Explanations and Designing Solutions Engaging in Argument from Evidence Planning and Carrying Out Investigations Using Mathematics and Computational Thinking 	Principle 2 - A, B, C, D Principle 3 - C Principle 4 - B, D Principle 5 - B

Watershed Models

By constructing a 3-dimensional model, students simulate a watershed, learning that every person on earth lives within a watershed that we all share. In this activity students investigate drainage patterns and the origin of the water in their local community. Revisiting the water cycle, students define what determines our local watersheds. They will learn the origin of water used in their community and that water running downhill is the dominant process in shaping the California landscape.

Disciplinary	Core Ideas			Cross Cutting Concept	Science and Engineering Practices	<u>Environmental</u>
K-2 ESS2.C ESS3.A, C	3-5 LS2.C ESS2.C ESS3.A, C	6-8 LS2.C ESS2.C ESS3.A, C	9-12 LS2.C ESS2.C ESS3.C	Cause and Effect Energy and Matter Patterns Stability and Change Systems and System Models	 Asking Questions and Defining Problems Constructing Explanations and Designing Solutions Developing and Using Models Planning and Carrying Out 	Principles and Concepts Principle 1 - B, C Principle 2 - A, B, C Principle 3 - A, B, C Principle 4 - A, B, C
					Investigations	Principle 5 - A, B

Web of Life

Students learn the ecological basis behind food chains and food webs. Feeding levels (producers, consumers, and decomposers), energy requirements, and nutrition types (carnivore, herbivore and omnivore) are explained. Using this information, students create a pictorial food web using the plants and animals at Scout Island. Species interaction and competition for resources are addressed.

Disciplinary Core Ideas			Cross Cutting Concept	Science and Engineering Practices	Environmental
ESS3.A LS1.C	3-5 ESS3.A LS1.C LS2.A, B	6-8 ESS3.A LS1.C LS2.A, B	Energy and Matter Patterns Stability and Change System and System Models	 Asking Questions and Defining Constructing Explanations and Designing Solutions Developing and Using Models Planning and Carrying Out Investigations 	Principles and Concepts Principle 2 - C Principle 3 - C Principle 4 - C